
Lawrence Livermore National Laboratory

Sasha Ames
Maya Gokhale (LLNL), Carlos Maltzahn (UCSC)

Data Management of Metadata-Rich File
Systems

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

LLNL-PRES-418053

2 Option:UCRL#! Option:Additional Information!

Lawrence Livermore National
Laboratory

Introduction

  58% annual increase of data creation rate, 5-fold increase in
4 years. 487 exabytes created in 2008 [Gantz08,09]

  Hierarchical file systems [Daley65] originated in 1965 for
1000s of files.
•  Now 6 or more orders of magnitude more files per file

system
•  Names and hierarchical directories as the only user-

defined metadata concepts not adequate anymore
➡  Need scalable data model for organizing files
➡  Need scalable naming interface for accessing files
➡  Example: find files of “news documents” that refer to the

“location” “New York”

3 Option:UCRL#! Option:Additional Information!

Lawrence Livermore National
Laboratory

Traditional Architecture

  Relational databases
store metadata

  File systems store data
  Application must

“bridge” two systems
  Advantages:

•  High throughput for file
I/O

•  Mature technology for
metadata management
and retrieval

  Problems:
•  Disparate name spaces
•  Brittle schema
•  Brittle consistency
•  Individual file stat/open/

close

Application

RDBMS File system

API: SQL API: POSIX

User
Metadata Data

4 Option:UCRL#! Option:Additional Information!

Lawrence Livermore National
Laboratory

Metadata-rich File Systems

  Integrates database functionality into file system for the purpose of
metadata management

  Benefits:
•  General schema
•  Unified namespace
•  Robust consistency
•  Query based file access

interfaces

  Our approach:
•  Graph-based data model for file metadata
•  Path-based language interface for query added to POSIX file

system interface
- Query results appear in directory listings (Semantic File

Systems)

File System

Query
Processor Metadata

Application

API: POSIX + Naming Interface

Data

5 Option:UCRL#! Option:Additional Information!

Lawrence Livermore National
Laboratory

Data Model

  Unlike POSIX, no file/directory
distinctions

  Files connected with directed
“edge-links”

  Name=value paired attributes
attached to files and links.

  File and links assigned IDs
  File “names” become one of

many attributes
  Links identified through file

endpoints and/or attributes
  POSIX directories are zero-byte

files linking to children (for
semantics compliance)

Use of zero-byte files helpful in
attaching to files metadata that is
more complex than a single
attribute.

6 Option:UCRL#! Option:Additional Information!

Lawrence Livermore National
Laboratory

Example graph data

Query: find files of “news documents”
that refer to the “location” “New York”

Quasar expression:
@FileType=NewsDocument
@child:SemanticType=Location;
 SemanticValue=New York;
^Extractor=Stanford

7 Option:UCRL#! Option:Additional Information!

Lawrence Livermore National
Laboratory

QFS Physical Data Model

  Table entries refer to file
attribute sets and lists of ID
pairs, each containing
parent/child file ID (inode #)
and link ID

  Link ID refers to links table
entries

  File IDs refer back to file
table entries

  Global file/link indices
contains attribute
vocabulary trees

  Each index tree node refers
to a posting list of file/link
IDs

8 Option:UCRL#! Option:Additional Information!

Lawrence Livermore National
Laboratory

Experimental Methodology

  Workload Studies
•  Use Livermore Entity Extractor for data + metadata, Reuters news corpus

-  Extractor reconfigured for QFS
•  Compare QFS prototype with FS + DB (PostgreSQL)

-  DB configured with schema specific to Lextrac and indexing on all
columns

•  Ingest experiments: Look at increasing document counts, 8/16GB, HD/
SSD.

•  Query experiments: 5 classes of queries.
-  Choose query “terms” from Lextrac entity distributions.
-  Equivalent queries run in both Quasar and SQL

  POSIX FS operation studies: microbenchmarks to measure overhead of QFS
metadata management
•  Create a directory tree (mkdir)
•  “Find” (stat/opendir/readdir)
•  Move single file (rename)

9 Option:UCRL#! Option:Additional Information!

Lawrence Livermore National
Laboratory

Ingest Study 1 – QFS scalability

10 Option:UCRL#! Option:Additional Information!

Lawrence Livermore National
Laboratory

Ingest Study 2 – QFS vs FS+DB

11 Option:UCRL#! Option:Additional Information!

Lawrence Livermore National
Laboratory

Example Queries

  Simple Queries:
•  Q0 Find all documents containing the "location" “New York.”
•  Terms based on ranking entity values by frequency

  Complex Queries: (Document, entity1, entity2, proximity)
•  Q1 Find all documents that contain “New York” and “NYSE”

with proximity score of “25”.
•  Q2 Find the proximity scores relating “New York” and “NYSE”

in documents with names in the range of “N20090101” –
"N20090331.”

•  Q3 Find entities co-occurring with “New York” in documents
with names in the range “N20090101” – “N20090331” whose
proximity score with “New York” is between “20” and “30”.

•  Q4 Same as Q3 but match scores of exactly "25".
•  Entity values, proximity scores and document ranges selected

randomly (chance of no results)

12 Option:UCRL#! Option:Additional Information!

Lawrence Livermore National
Laboratory

Query Study 1 – 20,000 Lextrac Documents

13 Option:UCRL#! Option:Additional Information!

Lawrence Livermore National
Laboratory

Query Study 2 – 450,000 Lextrac Documents

14 Option:UCRL#! Option:Additional Information!

Lawrence Livermore National
Laboratory

POSIX Operation Microbenchmarks

15 Option:UCRL#! Option:Additional Information!

Lawrence Livermore National
Laboratory

Discussion and Future Work

  QFS prototype optimized for ingest
•  Ingest 1.4-1.85x faster than FS+DB
•  File moves slower than ext2 FS

  QFS Metadata store 3.5x larger than Postgres
•  450K documents Q0, 20% of Q1-Q2 have 1000x slower

performance
  Future Work:

•  Scientific data use case: Sloan Digital Sky Survey
•  Metadata analysis: look at index properties and access

patterns
•  Optimizations
- Reduce metadata store size
-  Improve query planner

